If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=185
We move all terms to the left:
3x^2-(185)=0
a = 3; b = 0; c = -185;
Δ = b2-4ac
Δ = 02-4·3·(-185)
Δ = 2220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2220}=\sqrt{4*555}=\sqrt{4}*\sqrt{555}=2\sqrt{555}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{555}}{2*3}=\frac{0-2\sqrt{555}}{6} =-\frac{2\sqrt{555}}{6} =-\frac{\sqrt{555}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{555}}{2*3}=\frac{0+2\sqrt{555}}{6} =\frac{2\sqrt{555}}{6} =\frac{\sqrt{555}}{3} $
| 2b-9+6b=26 | | 6v+18=12 | | 8b=64. | | 5v-15=-5 | | 4-2(x+5)=8x14 | | 2/5u-8/3=-(9/4 | | 8(r-5)-7(r-1)=2(r+4) | | 6(x-2)+1=2(3x-5)+9 | | 2aˆ2-3a=18 | | 3.2x+40.4=19.2−7.4x | | 2aˆ2-3a=0 | | 2x2+5x−4=−1 | | 2/3-1/2y=-1/2 | | -5x=42=-8 | | f-(-19)=18 | | 2m-5m=-4 | | 0.05(6t-5)=0.30(t-5)+1.25 | | 9=-15+2x | | 3+x=24-5 | | 3(u-9)-4=-4(-6u+4)-3u | | -3(u+1)=3u-9+3(2u+1) | | -14-q=-10 | | -4(5w-1)+6w=2(w+3) | | X+30/x=50/8 | | 3.1x-8.92=2.7x+3.6 | | -4(5y-3)+8y=4+2(2y-2) | | -5x=18x² | | 5.5x-6.02=5.1x+7.9 | | 3(w-6)-3=-3(-7w+2)-8w | | 3(4y+3)=16 | | 8x=12=2(x-3) | | 2.5(6x-4)=100 |